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An Algorithm
(Kronecker, Griindzuge ..., Crelle, 92, 1882)

f(x) € Z[x], deg(f) =n gcd(f,f') =1

1)Let R(Y7X17...,Xn) = HGGSH(Y_(O‘U(U)G +--~+Oég(n)xn))
= HUESn(Y - (a1Xg,1(1) +...t a”X0*1(n)))
S Q[Y,X1,.A.7Xn]

2) Factor R(Y, X1,...,Xs) = Ru(Y. X1,....Xo) -~ R(Y, X1,...,Xy)

Galois group of f = {O’ S | :‘?1(Y7 X0(1),. .. ,Xc(n)) = R1(Y,X1,. .. 7Xn)}

High Complexity!
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Polynomial Time Algorithms

Question: is-there-an-algerithm-to-compuie-the-Galeisgroup-ofH-Hbo<#pd
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For m € Z, size(m) = number of digits ~ log(m)
For f(x) = anx" + ...+ a € Z[x], size(f(x)) = n- max;{size(a;)}.

Running Time = number of 4+, x, —, +

Revised Question:Is there an algorithm to compute generators of the Galois
group of f(x) € Z[x] whose running time is given as a polynomial in the size
of f?

We do not know!
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Galois (Discours préliminaire):

“Si maintenant vous me donnez une équation que vous aurez choisie a votre
gré et que vous desiriez connaitre si elle est ou non soluble par radicaux, je
n‘aurai rien a y faire que de vous indiquer le moyen de répondre a votre
question, sans vouloir charger ni moi ni personne de le faire. En un mot les
calculs sont impraticables.”

Question: Is there an algorithm to decide if f(x) € Z[x] is solvable by radicals
whose running time is given as a polynomial in the size of ?

Landau and Miller (Solvability by radicals in polynomial time, J. Comp. Sys.
Sci.,1985):

“If now you give us a polynomial which you have chosen at your pleasure,
and if you want to know if it is or is not solvable by radicals, we have
presented techniques to answer that question in polynomial time.”
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e Lenstra-Lenstra-Lovasz (1982): Polynomial time algorithm to factor
f(x) € Q[x].

= Landau (1985): Construct splitting field and Galois group G in time
polynomial in |G| and size(f)

Adjoin root of f = Q(«1), factor f over Q(a1) = f = fifo--- f;
Adjoin root of fi = Q(a1, a), factor f over Q(a1, az)

Stop when f factors completely over K = Q(a, . .., ap)
K=Q(B), 8=rnat+...+ mas, g(x) = min. poly 3 over Q
Galois group = {o € Sn | g(rao(ty + - .. + Mmoto(m) = 0}
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Ingredients of the Landau-Miller Algorithm

e Lenstra-Lenstra-Lovasz (1982): Polynomial time algorithm to factor
f(x) € Q[x].

= Landau (1985): Construct splitting field and Galois group G in time
polynomial in |G| and size(f)

e Sims (1970): Given a group G can determine if it solvable in time
polynomial in |G.

= Can determine if Galois group is solvable in time polynomial in |G|
and size(f)

e Palfy (1982): G C S, solvable, transitive and primitive implies |G| < n®2®

e Landau-Miller (1985): Showed how to reduce to the case of equations with
transitive, primitive Galois groups.
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Mod p techniques
f(x) € Z[x], monic,degf =n  A(f) =[(ai — )2 €Z

Fact: For pt A(f), Gal(f (mod p)) — Gal(f)
Theorem of Frobenius Let n=nmn+...4+n, N >no...>n;

Density of {p | pt A(f), f=fi---f (mod p), deg(f;) = ni}

l
ﬁ -|[{c € G| o =77, 7iacycle of length n;}|

Advantages:
e Easy to factor mod p (Berlekamp, 1967)

e Gives a good probabilistic test for Sp, An; good evidence for other groups.
Disadvantages:

o Asymptotic result

e Groups not determined by distribution of cycle patterns - already in deg. 8
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Invariant Theoretic Techniques
Example: f(x) = X3 + bx + ¢ € Q] Gal(f) C Ss
f(x)=(x+a)(x+Bx+7), a,B8,v€ Q= Gal(f) =S or {id}

f(x) irreducible = Gal(f) acts transitively on the roots a1, az, ag
Group Theory = Gal(f) = Ss or As

Let
F(Z) =2 + 4b3 =+ 2702 = (Z + 5)(2 — 5) 6= (a1 — Ozz)(ag — ag)(a3 — a1)
¢ is an invariant of A3 but not of Sz so

Gal(f) = As & F(z) factors over Q.

Reduce calculation of Galois groups to factorization of associated
polynomials
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Why does this work?

I. A finite group is determined by its permutation representations.

Given H C G, 3p: G — Sy such that G acts transitively but H does not.

Il. One can find permutation representations of G = Gal(K /k) in K.
Letp: G — Sy, then 3 34,..., 8y € K such that

o(ai) = ayeyhy, foralle e G

Given Gal(K/k) C G, to show Gal(K/k) = G:

e For each maximal subgroup H C G, find a representation as in I.
eFind 31,...,8v € Kasinll

e Form Fy(z) =11(z — 58i) € k[z].

o If Fy(2) is irreducible for each H, then Gal(K/k) = G.
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Picard-Vessiot Theory

Consider a linear differential equation

n dn—1
L) =2 ta @9 T+ .+ ay=0, a(z)eC(z)

az" dzn—1
2y a nonsingular point = 3 solutions ys, ..., y» anal. near 2, lin. indep. /C.
PV-extension K = C(Z)(y17' T 7.y'77y1/7 R 7yrl77 s 7.y1(n71)7 oo ,yr(1n71)).

PV-group DGal(K/k) = {oc: K — K | o is a C(z) — diff. autom. of K}

o DGal(K/k) leaves Soln(L) invariant = DGal(K/k) C GLn(C).
o DGal(K/k) is Zariski-closed.

Galois Correspondence: HZariski closed C DGal(K/C(z)) = FDiH. field, C(z)CFCK
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What do Differential Galois Groups Measure?

e Algebraic Dependence: K - a PV-extension of C(z) with PV-group G

tr. deg.c,) K = dimc G

Example:

Ly) = ”+1+(1—A—2) =0 >\—1§ZZ
.y - .y z Z2y77 2

= DGal = SLs(C)
= tr.deg.c(,C(2)(dr, Ya,da, YA) =3



e Solvability



e Solvability

L(y) = 0is solvable in terms of liouvillian functions if there exists a tower of
fields C(z) = Ko C ... C K, such that Kip1 = Ki(t) with

o I algebraic over K;, or

o teK,ie, ti=[u, ueK,or

< t,'l/t/ S K,'7 e, ti= ef”f, ui € K.

with K C K, where K is the PV-extension associated with L(y) = 0.



e Solvability

L(y) = 0is solvable in terms of liouvillian functions if there exists a tower of
fields C(z) = Ko C ... C K, such that Kip1 = Ki(t) with

o I algebraic over K;, or
o teK,ie, ti=[u, u€kK,or
< t,'l/t/ S K,'7 e, ti= ef”f, ui € K.

with K C K, where K is the PV-extension associated with L(y) = 0.

Example:

Ko = C(x) C Ki = Ko(VX) C Ko = Ki(e! V)
{e/ V¥ e/ ¥*} is a basis for Soln(L = 0)



e Solvability

L(y) = 0is solvable in terms of liouvillian functions if there exists a tower of
fields C(z) = Ko C ... C K, such that Kip1 = Ki(t) with

o I algebraic over K;, or
o teK,ie, ti=[u, u€kK,or
< t,'l/t/ S K,'7 e, ti= ef”f, ui € K.

with K C K, where K is the PV-extension associated with L(y) = 0.

Example:

Ko = C(x) C Ki = Ko(V/X) C Ko = Ki(e/ V%)
{ef VX e ﬂ} is a basis for Soln(L = 0)

Thm: L(y) = 0 solvable in terms of liouvillian functions
< DGal contains a solvable subgroup of finite index.
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Ly) =y + ap1y™ D + ..+ ay a € Q(x)

e One can decide if L(y) = 0 has algebraic solutions
n = 2: Schwarz, Klein :: Baldassari-Dwork, van Hoeij-Weil, ...
n > 2: Jordan, Boulanger, Painlevé :: Risch, S.

e One can decide if L(y) = 0 is solvable in terms of liouvillian functions.
n = 2: Pepin :: Kovacic.
n > 2: Marotte :: S., Ulmer, ... (n = 3 van Hoeij, Weil, Ulmer, ..)

e Can characterize when L(y) = 0 is solvable in terms of linear DE of lower
order and decide for n = 3.

Can decide if L(y) = 0 solvable in terms of Airy, Bessel, Cylinder,
Kummer, Laguerre, Whittaker . .. (van Hoeij et al)

e One can compute the Galois group. (Hrushovsky)
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e A linear algebraic group G is determined by its linear representations.
< Can recover G from its category of fin. dim. G-modules
© Can construct all fin. dim. G-modules from a single faithful G-module via
sums, submodules, quotients and duals.
e A linear differential equation is an avatar for the representation theory
of its PV-group.
o Given L(y) with V = Soln(L(y)), for any fin. dim. G-module W,
can construct an L(y) with Soln(L(y)) = W.
(YWcV ~L=LoL, Soln(l)=W

(i) V = Soln(L(y)), W = SoIn(L(y)), VN W = (0)
~ V@ W = Soln(LCLM(L, L)(y))

(iii) Sym™(V) = {y1 - ym | yi € V} = SoIn(L®™(y))
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L®® factors.
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Thm. Assume L(y) = y"" + r(x)y.
DGal = Valentiner Group A;"* of order 1080

L®2 and L®3 are irreducible
L®% = [g0Lg, Lg,Lgirreducible.



