
Galois theory in Göttingen
(Noether, Artin. . . .)

Artin: “Since my mathematical youth I have been
under the spell of the classical theory of Galois.
This charm has forced me to return to it again and
again, and to try to find new ways to prove its
fundamental theorems.”



I was a witness how Artin gradually developed his
best known simplification, his proof of the main
theorem of Galois Theory.

The situation in the thirties was determined by the
existence of an already well developed algebraic
theory initiated by one of the most fiery spirits that
ever invented mathematics, the spirit of Galois.
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I was a witness how Artin gradually developed his
best known simplification, his proof of the main
theorem of Galois Theory.

The situation in the thirties was determined by the
existence of an already well developed algebraic
theory initiated by one of the most fiery spirits that
ever invented mathematics, the spirit of Galois.

Zassenhaus



Kiernan:

“ARTIN took a revolutionary new look at the
theory, and took up the concept stated implicitly by
GALOIS and announced, unheard, by DEDEKIND
and WEBER: The theory is concerned with the
relation between field extensions and their groups of
automorphisms.”



Weber 1912:

“Primarily two great general concepts lead to
a mastery of modern algebra . . . the concepts
of group and field”

No general account of Galois theory between Weber
and Artin emphasized this. But progress was not
only in general accounts.

Kiernan: “In the early decades of the 20th century,
German mathematicians such as EMMA NOETHER
(1882–1935) began to examine in detail fields and
their generalizations.”
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So, what did Artin do for Galois theory?

Generalized Dedekind’s fundamental theorem of
Galois theory from algebraic subfields of the complex
to arbitrary fields (esp. considering separability).

Eliminated primitive elements from the proof.

Everyone today uses Artin’s Fundamental theorem.
Many prove it with primitive elements.
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Artin made Galois theory
into

Moderne Algebra.



He built it on degree and dimension rather than
calculation.

Besides understating the substance of Artin’s work,
Kiernan misses its place in the future of Galois
theory – esp. class field theory and cohomology.
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Noether thoroughly absorbed and advanced
Dedekind-Weber on fields and groups.

E.g. a sublime triviality: Any field K acted on by
any finite group G is Galois over the fixed field KG.

She applies this triviality, plus her own group
invariant theory, to the inverse Galois problem.
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Let finite group G permute the field
K = Q(xe , xg , . . . , xh) generated by elements of G .

Noether showed KG is f.g. over Q, and if the
generating set can be shrunk to the size of G then
KG is a polynomial ring over Q.

K is Galois over KG.

By Hilbert irreducibility G is a Galois group over Q.
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Most importantly for Artin and the future of Galois
theory, Noether created algebra up to isomorphism
– not in the general-logical sense of the model
theorists or ‘structuralists’

– but in the specific mathematical sense she called
“purely set-theoretic” and “independent of any
operations.”
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Inclusions of submodules, and induced maps
between quotients, replace elements and equations.

Noether’s homomorphism and isomorphism
theorems.

What today is done by exact sequences.

As Artin works over fields, all this turns into
dimension of vector spaces.
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Independance of characters gives a lower bound on
dimension of certain vector spaces.

Lower bounds give other upper bounds – if one
space were too large, it would provide solutions to
linear equations reducing another space too much.

Artin proves, not equations between elements, but
equations between orders of groups, indices of
normal subgroups, and dimensions of spaces.
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Noether, with Bauer and Hasse, was already using
crossed products and representation modules for
class field theory.

Most famously Noether’s Hilbert’s Theorem 90.

She was consciously bringing Galois theory into her
framework of rings, ideals,and modules – on her
‘purely set theoretic foundations’.

We will look back, and then forward.
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To understand the 1930s, we must appreciate how:

Es steht alles schon bei Dedekind.

Dedekind makes the crucial observation that
algebraic independence of a is linear independence
of its powers a, a2, . . . an, . . . .
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Dedekind §161 proves

For any system φ1, φ2, . . . , φn of n permutations of
a field K , infinitely many numbers in K have n
distinct images under Φ.

Dedekind defines characters of finite Abelian groups

Artin extends to all groups so the above is a case of
independence of characters.

Artin does not mention pointwise independence.
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Dedekind §164–165 invents the idea of linear
independence (not for the first time, or the last)
right before our eyes –

casting about for the right
motivations, the right definitions, the right terms to
express them, the right theorems.
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Looking ahead

Artin, esp. with Tate, would take this into class field
theory and Galois cohomology.

Serre and Grothendieck restore the link with
monodromy and Riemann surfaces, in isotrivial and
étale covers, cohomology, and fundamental groups.
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